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Abstract-- The mixed convection in an axisymmetric point heat source due to a vertical free stream is analyzed

using the boundary layer equations. The two solutions where the buoyancy effects are favourable and adverse

with respect to the oncoming stream are studied. An analytical argument indicates that the solutions for the

favourable case are unique whereas those for the adverse case are dual. The numerical solutions for the

favourable case have been obtained for all flow regimes from pure forced convection to pure free convection

buoyant plume. For the adverse case the flow in the plume is retarded and the dual numerical solutions
correspond to the direct and reverse flows in the plume.

NOMENCLATURE

¢, specific heat at constant pressure;

E (0),exponential integral, defined by equation (40};

A nondimensional stream function, defined by
equation {15);

F, nondimensional stream function, defined by
equation (8);

h, nondimensional temperature, defined by
equation (15);
H, nondimensional temperature, defined by

equation (8);
Q, rate of heat release from point source;
temperature ;
free stream temperature;
u, axial velocity component;
v, normal velocity component;
U,., freestrcam velocity;
x, axial coordinate in the vertical direction;
¥, normal coordinate.

Greek symbols
a, mixed convection parameter, defined by
equation (14);

&,  mixed convection parameter, defined by
equation (B6);

[)7’ o 172 :

B, defined by equation (B3);

¢, 1, optimal coordinates, defined by equation (22);

{,n, similarity variables, defined by equations (7)

and (15);
» reference temperature, defined by equation(8);

£, anindex,¢ = 1forthefavourablecase,ande =
— 1 for the adverse case;

v,  kinematic viscosity;

p,  fluid density;

o,  Prandtl number of fluid;

¥, stream lunction.

INTRODUCTION

THE MIXED convection in an axisymmetric buoyant
plume is of interest in several engineering applications
such as hot wire anemometry and the dispersion of
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pollutants. The weakly buoyant plumes have been
studied by Wesseling [ 1]. Using the Oseen—Boussinesg
linearization of the Navier-Stokes equations, the
solution to the first perturbation for the velocity has
been obtained. The estimation of further higher order
perturbations in the scheme [ 1] is extremely difficult. If
the buoyancy and forced convection effects are
comparable, the Oseen linearization fails and one has to
consider the fuli non-linear equations. In the present
work the entire non-linear mixed convection regime
has been investigated when the free stream is vertical
using the boundary layer equations, for the two
situations where buoyancy effects accelerate and retard
the flow in the plume.

The effects of buoyancy in the mixed convection are
qualitatively similar to pressure gradients in the
boundary layer. When the buoyant force vector assists
the main stream, the flow in the plume is accelerating
and the situation corresponds to that of a favourable
pressure gradients in a boundary layer flow. When the
buoyant force vector opposes the main stream, the flow
in the plume is retarded and the situation corresponds
to that of an adverse pressure gradient in a boundary
layer flow.

The mixed convection problem due to the point heat
source in a vertical free stream admits self-similarity
unlike the 2-dim. heat source [2]. The limiting case of
purely free convection buoyant plume has been studied
[3, 4]. The numerical solutions to non-linear self-
similar equations have been obtained for air. For the
favourable case, the solutions have been obtained for
the entire non-linear mixed convection regime ranging
from pure forced to free convection flows. In the adverse
case the numerical solutions are dual corresponding to
the direct and reverse flows in the plume.

2. SIMILARITY ANALYSIS

The boundary layer equations for an axisymmetric
fluid motion under the Boussinesq approximation are
ou  d(yv)

T A
Oox + dy ’ (1)
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Here ¢ = 1 for the favourable case where buoyancy
accelerates the flow in the plume and ¢ = — 1 for the
adverse case where buoyancy decelerates the flow in the
plume. The velocity and temperature profiles are
symmetric with respect to the vertical axis and far away
approach their free stream values,

cu T

v=0, r==-=-- =0, (4)
vy

vow, u-U,. T-1T,. (5)

The integration of the energy equation (3) yields

) 0
pC, u(T—T,)ydy = = (6)
0 2n
where Q is the heat released from the point source.
When the buoyancy effects modifies the forced
convection flow, it is expected that the flow will behave
like an axisymmetric wake. Thus we consider the
following variables:

U,

(=23 O, = 7Q . {7
2vx 2mpe,vx

Y= wE(Q). T—T, = 0,HQ). (8)

Introducing the variables (7) and (8) in the governing
equations (1)-6) we get

(CFY +3FF +eaH = 0. {9)
e WCHY + MFHY = 0. (10)
The boundary conditions are
[=0F=!2F ={"H =0 (1)
(=0 FF-1. H-Q, (12a.b)
subject to the normalized heat flux condition
JJ F'Hd{=1. {13
0
Here 2, a parameter, defined by
.- Gry — ypQ (14)

"~ 2R? B 471/)('p\'[/3,
is a measure of the relative importance of the buoyancy
effect with respect to forced convection. The existence of
a solution with respect « is given in Appendix A.

For the favourable case, when o — 5 the buoyancy
force becomes dominant and the situation may be
studied by introducing the following variables:

= F(o,

The condition that at large values of o all the terms in
momentum equation (9) are of equal order leads to

(16)

1N =B, h(n) = H(J). (15)

=0 Y2

In the new variables (15), equations (9} (131 reduce to

fY+5 "+ h =0 (T

hY A+ (20 fhyY - O (18
n=0. f=y'? =yt 00 19k
- [T f hos 120a.by
fhdy =1 120

1

For f§ = 0 the above equations reduce to those of un
axisymmetric free convection buoyant plume [3. 41.
From transformation (7), it may be anticipated that the
paraboloidal coordinates are optimal in the sense of
Kaplun {5]. The optimal coordinates (S, y)cancasily be
worked out to be

=M vt 2

The stream function (8) may be written in terms of
optimal coordinates as

< U, e
= F( ) 23
v, . Uy .
U~ iAo (245
2 v
where A s given by
A = lim ({~F) = lim By /). 23

v no s

The second term in equation {24} 1s due to the
displacement effects in the outer layer invisid tlow
associated with the viscous buoyant plume and shows
that the stream surfaces of the displacement flow are
paraboloids of revolution corresponding to a constani
value of £. The solution (23) to boundary layer flow is
valid everywhere. to order v, in the flow field as 1t
contains the outer displacement solution as a special
case when U, z'v — «.

3. PERTURBATION EXPANSIONS

For the weakly buoyant plumes, the variables F and
Hinequations(9) and (10} are expanded in terms of  as
Foe=

3 F e 26

n -0
H=Yy
n =0

H (e (26b)
The solution to the leading momentum F, 1s dual. One
of the solutions is

Fold) = (27
and the corresponding solution to the energy equation
is

PRl 27

Hy = (0/2)exp(~

The second solution to the momentum problem [, 15
that of a mixing layer with a shift in origin [2, 7}.

In view of equation (27), the expansions (26) arc the
classical Oseen linearization. The higher order terms in
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the expansion are given by the recurrence relations

C ln—l

(CF)+ EF:‘ =—H,_,—3 ,;1 FF,.,, (28)
c [
H,+ EH,,= _EZr;l F,H,_,. (29)
The boundary and integral conditions are
(=0, F,=0"?F,={""H,=0, (30abyc)
{—>c, F, H,—0, (31a,b)

f ij" dt = — 2 FF;Hn_, . (32
0 r=1 J0

0

The solution to the first perturbation problem foro # 1
is

2
Fi=-"= {g [E+((/2)~ Ex(0/2)]

—1

1
+1—e_5/2—;(1—e_“5/2)}, (33)

_ a° 1. (1+4a9) 1
Hl_z(a—l)[Eln % o
x (60/2+ DE(al/2)—({/2+ 1)E,((/2)
1

1 -
+o(1—emW) 142 T2
a ag

1
x (y+1In {—In 2)+ ~In a:|e“/2 (34)
a
with
@ 1
Hydt=-—2 12" (35)
0 a—1 2
and foro = 1is
F,=2(1—e"%3, (36)

H =32In2—3—y—In{—E({/2)]e”*? (37)
Fy = (342y—2 In 2e"%2 4+ 2[E,((/2)
+In{—In 2]e ¥ —e 4+ ({=2)

x [E()—E({/2)]-2. (38)
with
j H, d{= -4 (39
o
Here E,({) is the exponential integral, defined as
E0) = J‘w et dt (40)
4

~ —=In{—y-0()),
and y = 0.577 is Eulers constant.

(-0

4. RESULTS AND DISCUSSION

The self-similar equations described in Section 2
constitute a fifth order singular non-linear boundary
value problem with two missing conditions at the axis.
The boundary conditions to be guessed can be reduced
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by one through a transformation described in
Appendix B. The remaining missing boundary
condition is obtained by satisfying the boundary
condition at infinity in the least square sense. Further,
on account of singularity in the equations at y = 0 the
numerical integration cannot be started from there. The
remedy generally employed in the literature is to find a
series solution valid in the neighbourhood of y = Oand
then start the integration from some finite, but very
small, values of y instead of y = 0. In the present work,
however, the highest order derivatives in the equations
have been estimated at y =0 and using these
derivatives the integration is directly started from the
axis y = 0. The numerical integration has been carried
out by the Runge-Kutta method with the Gill
improvement on an IBM 1130 computer for a Prandtl
number ¢ = 0.72.

We shall first describe our solutions for the
favourable case. For computational convenience the
entire range of o between zero and infinity is divided
into two subranges. For the subrange 0 < o < 1 the
solutions are computed from equations (9)}<13) and for
the second subrange 1 SaS o (0<B<1) from
equations (17)~21) with a changeover at a = = 1.
The velocity and temperature profiles for the first
subrange 0 < o S 1 are displayed in Fig. 1 and for
second subrange 1 < a < oo are displayed in Fig. 2.
The various characteristics of the buoyancy layer are
given in Tables 1 and 2. The velocity and temperature
at the axis and the entrainment of the fluid in
the plume are displayed in Fig. 3 (see also Tables 1
and 2). The results for the first subrange (0 < o < 1)are
displayed linearly with « while for the second subrange
(1 € o < o) they are shown linearly with 1/x (= f2).
Thus Fig. 3 covers the entire regime for the favourable
case from pure forced convection {« = 0) to pure free
convection (1/x = B* = 0) flows. Figure 3 shows that
the velocity in the plume is always greater than the free
stream velocity. Further, as buoyancy effects increase
the velocity in the plume also increases implying that
flow is accelerating. The temperature at the axis also
increased with buoyancy effects. When buoyancy
effects tend to become dominant (a — co) the
temperature at the axis and the entrainment,
approaches to a finite limit whereas the velocity at the
axis becomes very large (like «!/?) and flow approaches
to an axisymmetric buoyant plume [3, 4].

For the adverse case the buoyant force vector
opposes the main stream and the flow in the plume is
retarded. The numerical solutions for the velocity F'(0)
in the plane of symmetry and entrainment function A
are shown in Fig. 4(a) against the mixed convection
parameter . The figure shows that for a = 0.6076
(later denoted by «) the velocity at the axis F'(0)
vanishes. For a < a, the solutions are dual (see also
Appendix A) corresponding to a forward velocity
[F(0) > 0] and a reverse velocity [F'(0) < 0] in the
plume. The closed form solution obtained from Oseen-
linearization in Section 5, also displayed in the Fig. 4(a),
is valid only for & < 0.2. As o increases the Oseen-
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F1G. 1. Favourable case : Profiles for mixed convection buoyant plume in the range spanning from pure forced
convection to non-linear mixed convection flow (0 < o < 1). (a) Velocity profiles (b) Temperature profiles.
Legend same as given in Table 1.

linearization fails and one has to study the full non-
linear equations, which shows that F’(0) decreases as «
approaches to .. At x = 2, the velocity at the axis F'(0)
= 0 and dF'(0)/da 1s infinite. Around « = «, the curve
turns back with the result that as « decreases from its
value «, velocity at the axis F'(0) decreases to become
negative. The fact that F'(0) = Ofor x = 0 and z,, in the
reverse flow case, suggests that F’(0) should be
minimum at & = #,_, i.e. the magnitude of reverse flow
velocity is maximum. The solutions for the entrainment
function A displayed in Fig. 4(a) also clearly shows the
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duality of the solutions. For a given « the two solutions
for A are positive and the larger value corresponds to
the reverse flow case. This is physically reasonable as in
the reverse flow case the thickness of the plume is much
more than the forward flow case and a larger amount of
fluid is entrained. The temperature at the axis of the
plume H(0) is displayed in Fig. 4(b) against z. Here
again the dual solutions for » < z_ predict a positive
temperature at the axis. In the forward flow domain
when z = 0, H(0) = ¢/2, as » increases the value of H(0)
decreases and at o = %, dH(0)/dx 1s mfinite. In the

05

04
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02—

FiG. 2. Favourable case : Profiles for mixed convection buoyant plume in the range spanning from non-linear
mixed convection to convection buoyant plume (1 < a < o ; f = a™ '/?).(a) Velocity profile. (b) Temperature
profiles. Legend same as given in Table 2.
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Table 1. Favourable case: Characteristic values for the first
subrange {0 < o < 1) for mixed convection buoyant plume

o o F0) H0) —-A
0 0 1.0 0.36 0.0
0.1 0.2677 1.2059 03735 0.441
0.2 0.5226 1.3744 0.3827 0.7541
0.3 0.7698 1.5207 0.3897 0.9934
04 1.0018 1.6519 0.3653 1.1888

reverse flow domain as  decreases {rom g, to zero the
temperature H(0) decreases to zero continuously. The
numerical results for the thickness of boundary layer §
{defined as value of y where u = 0.99U ) the thickness
of reverse flowlayer 6, and various other characteristics
are given in Table 3.

For the adverse case the numerical results for profiles
of velocity F'({) and temperature H({) are displayed in
Figs. 5 and 6, respectively, and the curves labelled
1,2,3,..., Ll correspond to the various values of « given
in Table 3. The curve labelled 6 is for the marginal case
o = o, the curves 1-5 are for the forward flow case and
the curves 6-11 are for the reverse flow case. The
velocity profiles clearly display the duality of the
solutions. Figure 5 shows the extent of reverse flow in
the transverse direction d, is zero at & = x_{curve 6)and

Table 2. Favourable case : Characteristic values for the second
subrange (1 > f > 0) for mixed convection buoyant plume
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increases as a decreases from o In the limitas o — 0, the
thickness of reverse flow layer 9, increases but the
magnitude of the velocity #'(0) at the axis approaches
zero. The temperature profiles displayed in Fig. 6 show
that for the forward flow case (curves 1-6) the
temperature monotonically decreases from its value
H(0), at the axis, to zero at infinity. However, in the
reverse flow case (curves 7-11) the temperature profiles
show a maximum (say, H=H_,, at { ={_,). As «
decreases from its value o, the { . increases. H .
decreases continuouslyand {,,,, > ocas H,,,, — 0. The
above behaviour of the velocity and temperature
profiles suggests that as ¢ >0~ the velocity profile
approaches a mixing layer, similar to that of Chapman,
with a shift in origin [6]. The above mixing layer arises
in a manner analogous to that of Kennedy and
Stewartson (see Chapter 4 of ref. [6]) where the pressure
gradient in a self-similar incompressible wake
approaches zero.

In the reverse flow situation, where the thickness of
the boundary layer (in terms of transformed
coordinate, say, () is appreciably larger than in the
forward flow situation, the utility of the boundary layer
equations may appear somewhat limited. If y_, is the
thickness of boundary layer in the physical coordinate
then from equation (7) we have

Vo ¥)? = {20/U o x. (41)

The boundary layer equations are valid for y_, <« x and

B B 10 h(0) —A the condition (41} is satisfied for
0 0 1.3339 0.4963 6.6506 x» v, JU. . (42)
04 02695 1.3489 04538 3.5747 e
(132 g;é;g }‘5‘}3(1) gggg? %géﬁ‘]g The condition(41)implies that for small values of { , the
e 10054 16490 0.3948 L1715 vahidity of the solutions extends to the near source
region whereas for large values of {_, the solution is
18
6 (3 , ~~_ )
F\(O) -~ \<BF (0)
1ap- ~—
~~ S
O<casl 1¢ dgeo
12
10 ! i { [ | 1 i I
8
050
045
H{0)
040
035(- [
el st il l | ! l | ! 0
9 02 04 06 08 08 06 020.4 02 0
PURE FORCED a =g
o

F1G. 3. Favourable case : The velocity and temperature in the plane of symmetry and entrainment function A
against the mixed convection parameter «.

MMT 26:3 = E
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Fi1G. 4. Adverse case: The flow characteristics of the mixed convection buoyant plume. (a) Non-dimensional
velocity F'(0) at the axis and entrainment parameter A. (b) Non-dimensional temperature H{(0) at the axis
against mixed convection parameter o. The dotted lines show the results from Oseen-linearization.

valid relatively far from the heat source. In the
neighbourhood of the region x ~{ v/U,  the
boundary layer equations fail and one has to consider
the full Navier—Stokes equations.

5. CONCLUSIONS

(a) For the favourable case, where buoyancy effects
accelerate the flow in the plume, the solution to the
mixed convection problem is unique.

FiG. 5. Adverse case: Velocity profiles for the mixed
convection buoyant plumes. Curves labelled 1,2,3,...,11
correspond to values of « given in Table 3.

(b) For the adverse case, the buoyancy retards the
flow in the plume. For x < a, the solutions are dual
leading to forward and reverse flows in the plume. For
o = o, the solution is unique, corresponding to the
marginal state between the forward and reverse flows.
For o« > x, the solution to the problem does not exist.

(c) The nature of dual solutions in the adverse casc is
summarized below: For a given

(1) o < ag, the solutions are dual;

0 005 04t 015 02 025 03 035
H($)

FiG. 6. Adverse case: Temperature profiles for the mixed
convection buoyant plume. Curves labelled 1.2.3,.... b
correspond to the values of « given in Table 3.
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Table 3. Adverse case: Characteristic values of buoyancy layer for various values of mixed
convection parameter o

Legend
in Figs.
Sand 6 F(0) o H(0) S[U ,/(2vx)]'? A o[ U . /(2vx)]*?
1 1.0 0.0 0.36 0 0
2 0.8 0.2141 0.3438 2.7823 0.5230
3 0.6 03826  0.3234 3.2209 1.1817
4 04 0.5052 0.2969 3.8932 2.0479
5 0.2 0.5811 0.2608 4.0908 3.2695
6 0.0 0.6076  0.2083 4.3204 5.2594 0.0
7 —-0.2 0.5728 0.1188 5.0889 10.0744 1.633
8 -0.27 0.5112  0.4650E-1 6.1613 18.9371 2.750
9 —-0.24 0.4054 0.9818E-2 7.7822 39.1690 4.485
10 —-0.20 03609  0.3146E-2 9.3969 60.1973 5.820
11 —0.15 0.2675  0.5765E-3 12.1201 105.0362 8.116
(ii) F'(0) > 0, the solution is unique; where

(iii) F'(0) < 0,thesolutionfor H(0)is unique whereas
the values of « are dual ;
(iv) H(0), the solution is unique.

(d) In the adverse case the Oseen-linearization can
be fruitfully employed to study the forward flow
situation for small values of o« ( < 0.2). In the reverse flow
situation the solution for « — 0 approaches a mixing
layer with a shift in origin.
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APPENDIX A
EXISTENCE OF SOLUTIONS

The existence of the solution to the equations (9)}13) in a
weaker sense can be analyzed by employing the Oseen-
linearization, where F is replaced by { in non linear terms. The
integration of equations (9) and (10) under boundary
conditions (11) and (12) yields

2¢Ax
F=1- p— [E(al/2)—E({/2)],

H, = A exp(—ol/2), A>0.

Using the above solution the heat flux relation (13) yields a
quadratic equation

exA’+a{—24+0) =0, (A1)

1+
% =(o—1) / [40 1n<T”>] (A2)
The two roots of the equation (A1) are
1£(1 12
A= M. (A3)
—gofoug
For the adverse case (e = —1) the two roots are distinctly

positive and equal provided a < «,. For ¢ = 0.72, equation
(A2) predicts o, = 0.608. The slight error in the two values of o,
is due to the fact that the linearization employed here is not
valid around o =~ a,. The roots (A3) are complex for « > a
implying the non-existence of the solutions.

For the favourable case (¢ = 1), only one of the two roots in
equation (A3) is positive, implying that the unique solution
exists for all values of ¢ and «.

APPENDIX B
METHOD OF SOLUTION

The self-similar equations in Section 2 form a non-linear
two-point boundary value problem. The two missing
conditions to be guessed can be reduced to one by the
transformation given below.

The equations (17), (18) and (20b) are invariant under the
transformation

) =76, k)= keI, n=rn/J
but the conditions (21a) and (22) are changed to

(B1)

offon = BUN2 =F  (say) f F@hdi=J (B2

where J is a constant. For a given f, we can fix £(0) = 1, and
guess 7'(0) such that the boundary condition f'(c0) = § is
satisfied. The converged solution (£, k) will lead to the value J
defined by equation (B2). The converged solution can be
transformed in terms of original variables by equation (B1)
and the values of § is given by

B =B (B3)

In another case equations (9)(13) are invariant under the
transformation

(= FQ=FQO, oHO=aH® (B4)
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but the integral condition is changed to variables {B3) and the values of % 15 given by

[ FAAS 1 (RS) x= . &

Although without loss of generaluy we can fix [1{0) - 1,
For a given 4, we can again fix A{0) == 1. and guess F{0jsuch  for computing dual solutions in the adverse case near % ~ 011
that the boundary condition at infinity is satisfied. The  has been found convenient to {ix IHO) at relatively smaller
converged solution is transformed in terms of original  values.

CONVECTION MIXTE DANS UN PANACHE AXISYMETRIQUE

Résumé - La convection mixte pour une source ponctuelle de chaleur et un écoulement fibre vertical est
analysée en employant les équations de la couche limite. Les deux solutions pour les effets de gravitation
favorables ou adverses sont étudiées en rapport avec 'écoulement incident. Un argument analytique indigue
que les solutions pour le cas favorable ont été obtenues pour tout le régime d’écoulement allant de la
convection forcée pure a la convection naturelle pure. Dans le cas adverse, l'écoulement dans le panache est
retardé et les solutions duales numériques correspondent aux écoulements direct et de retour dans le panache,

GEMISCHTE KONVEKTION IN EINER ACHSENSYMMETRISCHEN
AUFTRIEBSSTROMUNG

Zusammenfassung - Die  gemischte Konvektion an  einer  achsensymmetrischen  punktformigen
Wirmequelle, die durch eine vertikale freie Stromung  bestimmt ist. wird mit  Hille der
Grenzschichtgleichungen untersucht. Es werden die beiden Fille betrachtet, in denen die Aufiriebseffekte die
vorhandene Grundstrémung verstirken oder ihr entgegenwirken. Die analytische Behandlung zeigt. dald die
Losungen [ir den verstarkenden Fall eindeutig sind, wéhrend sich fir den entgegenwirkenden Fall
doppeldeutige Losungen ergeben. Die numerischen Losungen fiir den verstdrkenden Fall wurden fiir den
gesamten Bereich der Strémungszustidnde vonreiner erzwungener Konvektion biszu retner freier Konvektion
der Auftrichsstromung berechnet. Im entgegengerichteten Fall wird die Stromung im Auftricbsgebiet
verzogert, und die doppeldeutigen numerischen Ldsungen entsprechen der direkten und der Riickstromung
im Auftriebsgebiet.

CMEIAHHAS KOHBEKUWS B OCECUMMETPUUYHOW IMJIABYUYEN CTPYE

AHHOTaUMS—CMEIAHHAS KOHBEKIMS B CIIy4ae OCCCHMMETPHYHOI'O TOYEYHOro HCTOYHHMKA TEILIa.
BBI3bIBAEMAS BEPTHKAILHLIM CBOOOAHBIM TEYEHHEM, [POAHATH3IUPOBAHA C MOMOIULID yPaBHEHHH
NOrpaHKHYHOro cos. M3yueHsl 1Ba pelleHus, KOTJa CHa MJABYYECTH UMEET TAKOE € HANpaBJeHHE,
KaK HaTeXarolmi TMOTOK, WiIHM JPOTHBONOIOXKHA eMy. AHa/Mu3 yKa3blBaeT HA CIMHCTBEHHOCTH
PEWICHUS A8 WEPBOrO Ciyvas ¥ Hajluupe JBYX peieHuit nns proporo. YHCieHHbIE DeieHMs /i
REPBOTO C.1y4as NONYYEHbl BO BCEM JHANA30HE PEKHMMOB TEYEHHR, HAMHHAN C YHCTO BBIHYXAEHHOH
KOHBEKIMH ¥ KOHuas cBODOMHOKOHBEKTHBHON cTpyeit. Bo BTOpOM ciiydae TedeHHe B CTPye 3aMERIEHO,
a J1Ba PElieHH# COOTBETCTBYIOT NPAMOMY M 0OPAaTHOMY TEHEHHSM B CTPYE.



