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Abstract The mixed convection in an axisymmetric point heat source due to a vertical free stream is analyzed 
using the boundary layer equations. The two solutions where the buoyancy effects are favourable and adverse 
with respect to the oncoming stream are studied. An analytical argument indicates that the solutions for the 
favourable case are unique whereas those for the adverse case are dual. The numerical solutions for the 
favourable case have been obtained for all flow regimes from pure forced convection to pure free convention 
buoyant plume. For the adverse case the flow in the plume is retarded and the dual numerical solutions 

correspond to the direct and reverse flows in the plume. 

NOMENCLATURE 

C P specific heat at constant pressure; 
E,(t),exponential integral, defined by equation (40); 

nondimensional stream function: defined by 
equation (15) ; 
nondimensional stream function, defined by 
equation (8); 
nondimensional temperature, defined by 
equation (15) ; 
nondimensional temperature, defined by 
equation (8); 
rate of heat release from point source ; 
temperature : 
free stream temperature; 
axial velocity component ; 
normal velocity component; 
free stream velocity ; 
axial coordinate in the vertical direction ; 
normal coordinate. 

symbols 
mixed convection parameter, defined by 
equalion (14): 
mixed convection parameter, defined by 
equation (B6) ; 
c1- I/2. 

defined by equation (B3); 
optimal coordinates, defined by equation (22); 
similarity variables, defined by equations (7) 
and (15); 
reference temperature, defined by equation (8); 
an index, E = 1 for the favourablecase, and E = 
- 1 for the adverse case; 
kinematic viscosity ; 
fluid density ; 
Prandtl number of fluid; 
stream function. 

THE MIXED convection in an axisymmetric buoyant 
plume is of interest in several engineering applications 
such as hot wire anemometry and the dispersion of 

pollutants. The weakly buoyant plumes have been 
studied by Wesseling [I]. Using the Oseen-Boussinesq 
linearization of the Navier-Stokes equations, the 
solution to the first perturbation for the velocity has 
been obtained. The estimation of further higher order 
perturbations in the scheme [l] is extremely difficult. If 
the buoyancy and forced convection effects are 
comparable, the Oseen linearization fails and one has to 
consider the full non-linear equations. In the present 
work the entire non-linear mixed convection regime 

has been investigated when the free stream is vertical 
using the boundary layer equations, for the two 

situations where buoyancy effects accelerate and retard 
the flow in the plume. 

The effects of buoyancy in the mixed convection are 

qualitatively similar to pressure gradients in the 
boundary layer. When the buoyant force vector assists 
the main stream, the flow in the plume is accelerating 
and the situation corresponds to that of a favourable 
pressure gradients in a boundary layer flow. When the 

buoyant force vector opposes the main stream, the tIow 
in the plume is retarded and the situation corresponds 
to that of an adverse pressure gradient in a boundary 
layer flow. 

The mixed convection problem due to the point heat 
source in a vertical free stream admits self-similarity 

unlike the 2-dim. heat source [Z]. The limiting case of 
purely free convection buoyant plume has been studied 
[3, 41. The numerical solutions to non-linear self- 
similar equations have been obtained for air. For the 
favourable case, the solutions have been obtained for 
the entire non-linear mixed convection regime ranging 
from pure forced to free convection flows. In theadverse 
case the numerical solutions are dual corresponding to 
the direct and reverse flows in the plume. 

2. SIMILARITY ANALYSIS 

The boundary layer equations for an axisymmetric 

fluid motion under the Boussinesq approximation are 

y?!+!3gL,, 
, 
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Here t: = 1 for the favourable case where buoyancy 
accelerates the flow in the plume and I: = ~ 1 for the 
adverse case where buoyancy decelerates the flow in the 
plume. The velocity and temperature profiles are 

symmetric with respect to the vertical axis and far away 
approach their free stream values. 

,’ = 0. 
iu i7 

(’ = _- ZX ~_ =: 0, (4) 
t J (1 

J’ -t -, , 11 + c; * . 7. -_) ‘7’ I (5,l 

The integration of the energy equation (3) yields 

where Q is the heat released from the point source. 
When the buoyancy effects modifies the forced 

convection flow, it is expected that the tlow will behave 
like an axisymmetric wake. Thus we consider the 
following variables : 

$ = VXF(;), T- 7‘, = II,H(<). (8) 

Introducing the variables (7) and (8) in the governing 
equations (l)-(6) we get 

(CF”)’ + : FF” f czH = 0. (9) 

(r- ‘(;H’)‘+;(FH)’ = 0. (10) 

The boundary conditions are 

<=O.F‘=~” F” = <r 2 77’ = 0, (11) 

< + 0. F’ + 1. H + 0. ( 12a.b) 

subject to the normalized heat flux condition 

.i 

I 
E”H d< = I. (13) 

0 

Here CC, a parameter, defined by 

(14) 

is a measure of the relative importance of the buoyancy 
effect with respect to forced convection. The existence of 
a solution with respect x is given in Appendix A. 

For the favourable case, when a -+ CC the buoyancy 
force becomes dominant and the situation may be 
studied by introducing the following variables : 

q = I;:$. i(q) = F(c), h(r/) := H(r). (15) 

The condition that at large values of x all the terms in 
momentum equation (9) are of equal order leads to 

/i=x “1. (16) 

For J = 0 the above equations reduce to those ot au 
axisymmetric free convection buoy-ant plume I?. 4]_ 

From transformation (7). it may be anticrpated that the 
paraboloidal coordinates arc optimal in the scnsc’ 111 

Kaplun [5].Theoptimalcoordinatcs(~. /)cancasrly be 
vvorked out to be 

\ = ;c:pr,, I’= (</I’ ! 1: 7: 

‘The stream function (8) may be written in ternrs iii 
optimal coordinates as 

where A 15 given by 

A : lim (<mm_ b-;) = lim (/in! 1 ) I_?51 
-7 ,I * : 

The second term in equation t?3) is due to tht 
displacement effects in the outer layer invisid how 
associated with the viscous buoyant plume and shrew\ 
that the stream surfaces of the displacement lloa ‘II-C 
paraboloids of revolution corresponding to a constanI 
value of <. The solution (23) to boundary layer tIow r)r 
valid everywhere. to order 1’. In the flow ticld ah Ii 
contains the outer displacement mlut~on it:, a speci,tl 
case when L’ / ,y I‘ + I 

3. PE:RTI!RRATIOiY EXI’4NSIONS 

For the weakly buoyant plumes, the v arrahlcs 7 and 
Hin equations (9) and (10) are expanded in terms of pi as 

1,’ = x F,,(;I(i:x)‘:. i ZhLl ! 
l, 0 

t1 = 1 If,,(&.ri” I,hl)i 
,I 0 

The solution to the leading momentum I;,, IS dual. <)w 

of the solutions is 

E’,,(i) = ; !?7Ji 

and the corresponding solution to the energy equatmrr 
is 

II,, = (0;2)exp( Crii II. I ?.7hi 

The second solution to the momentum problem 7 (, I\ 
that of a mixing layer with a shift in origin I;?, 71. 

In view of equation (27) the expansions (26) arc the 
classical Oseen IineariLationThe higher order terms in 
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the expansion are given by the recurrence relations 

((F’1)‘+iF = -_H _ -‘“&F”_ 
n 

2 ” “l 2,=, ‘nr’ 
(28) 

H:,+;H,= -5 $ F,H,_, (29) 
I 1 

The boundary and integral conditions are 

[ = 0, F, = 11/’ F:: = cl’* l$ = 0, (30a,b,c) 

i+ 00, F:, H,+O, (3la,b) 

H, di = - i 
s 

m F;H,_, dc. (32) 
r=1 0 

The solution to the first perturbation problem for CT # 1 
is 

F 1 = 2 ; CFi(II2) - ~,kG’)l 

(33) 

x cd72 + 1)E,bwHl72+ 1)ElKP) 

+ i(, -e--“i’2)_l+e-i’2_ a-l 
cr 

x (y+ln <-ln 2)+ iln 0 1 eCiiz (34) 

with 

s cc a+1 
ff, di = - &In7 (35) 

0 

and for e = 1 is 

F, = 2(1-e&“), (36) 

H, = )[2 In 2-;-y-In [-E,(5/2)]e-i’Z, (37) 

F, = (3+2y-2 In 2)e-r’z+2[E,(c/2) 

+ln [-ln 2]e-i’z-e-i+(~-2) 

x C~,(5)-~Im-2. (38) 
with 

s 

Cc 
H, dc = -f. (39) 

0 

Here E,(c) is the exponential integral, defined as 

1 

m 

E,(i) = e-‘Jt dt (40) 
i 

- -In i-r-O([), i-0 

and y = 0.577 is Eulers constant. 

4. RESULTS AND DISCUSSION 

The self-similar equations described in Section 2 
constitute a fifth order singular non-linear boundary 
value problem with two missing conditions at the axis. 
The boundary conditions to be guessed can be reduced 

by one through a transformation described in 
Appendix B. The remaining missing boundary 
condition is obtained by satisfying the boundary 
condition at infinity in the least square sense. Further, 
on account of singularity in the equations at y = 0 the 
numerical integration cannot be started from there. The 
remedy generally employed in the literature is to find a 
series solution valid in the neighbourhood of y = 0 and 
then start the integration from some finite, but very 
small, values of y instead of y = 0. In the present work, 
however, the highest order derivatives in the equations 

have been estimated at y = 0 and using these 
derivatives the integration is directly started from the 
axis y = 0. The numerical integration has been carried 
out by the Runge-Kutta method with the Gill 
improvement on an IBM 1130 computer for a Prandtl 

number (r = 0.72. 
We shall first describe our solutions for the 

favourable case. For computational convenience the 
entire range of CL between zero and infinity is divided 
into two subranges. For the subrange 0 & a 5 1 the 

solutions are computed from equations (9H13) and for 
the second subrange 1 6 a Si 00 (0 < /I IS 1) from 
equations (17H21) with a changeover at a = p = 1. 
The velocity and temperature profiles for the first 
subrange 0 < a 5 1 are displayed in Fig. 1 and for 
second subrange 1 < a < co are displayed in Fig. 2. 
The various characteristics of the buoyancy layer are 
given in Tables 1 and 2. The velocity and temperature 
at the axis and the entrainment of the fluid in 
the plume are displayed in Fig. 3 (see also Tables 1 

and 2). The results for the first subrange (0 < a < 1) are 
displayed linearly with a while for the second subrange 

(1 < a < co) they are shown linearly with l/a (= /?). 
Thus Fig. 3 covers the entire regime for the favourable 
case from pure forced convection (a = 0) to pure free 
convection (l/a = b2 = 0) flows. Figure 3 shows that 
the velocity in the plume is always greater than the free 
stream velocity. Further, as buoyancy effects increase 

the velocity in the plume also increases implying that 
flow is accelerating. The temperature at the axis also 

increased with buoyancy effects. When buoyancy 
effects tend to become dominant (x + 00) the 

temperature at the axis and the entrainment, 
approaches to a finite limit whereas the velocity at the 
axis becomes very large (like al/*) and flow approaches 

to an axisymmetric buoyant plume [3,4]. 
For the adverse case the buoyant force vector 

opposes the main stream and the flow in the plume is 
retarded. The numerical solutions for the velocity F’(0) 
in the plane of symmetry and entrainment function A 
are shown in Fig. 4(a) against the mixed convection 

parameter a. The figure shows that for a = 0.6076 
(later denoted by as) the velocity at the axis F’(0) 
vanishes. For a < a, the solutions are dual (see also 
Appendix A) corresponding to a forward velocity 
[F’(O) > 0] and a reverse velocity [F’(O) < 0] in the 
plume. The closed form solution obtained from Gseen- 
linearization in Section 5, also displayed in the Fig. 4(a), 
is valid only for a < 0.2. As a increases the Oseen- 
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FE. 1. Favourable case : Proliles for mixed convection buoyant pItime in the range spanning from pur-c lorcctl 
convection to non-linear mixed convection flow (0 < r < I). (a) Velocity profiles (b) Tempcratur~ pwlile~. 

Legend same as given m Table I. 

linearization fails and one has to study the full non- duality of the solutions. For a given 1 the two solutions 

linear equations, which shows that F’(0) decreases as z for A are positive and the larger value corresponds tcl 

approaches to r,. At u = x, the velocity at the axis F’(0) the reverse flow case. This is physically reasonable ;I\ III 

= 0 and dF’(O)/da is infinite. Around x = r, the curve the reverse flow case the thickness of the plume is much 

turns back with the result that as a decreases from its more than the forward flow case and ;L larger amount 01‘ 
value CI, velocity at the axis F’(O) decreases to become tluid is entrained. The temperature at the axis of the 

negative. The fact that F’(0) = 0 for r = 0 and x(,, in the plume H(0) is displayed in F‘ig. 4(b) against X. 11~~: 

reverse flow case, suggests that F’(O) should be again the dual solutions for x < r, predict a positlvc 

minimum at CI = s(,, i.e. the magnitude of reverse tlow temperature at the axis. In the forward How domain 

velocity is maximum. The solutions for the entrainment when Y = 0. H(0) = o/2, as x increases the val~te offf(OI 

function A displayed in Fig. 4(a) also clearly shows the decreases and at 2 = x,. dMIO)~dcr IS iniinitt’. In !h~* 
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FIG. 2. Favourable case : Profiles for mixed convection buoyant plume in the range spanning from nowlineal 
mixed convection to convection buoyant plume (1 < I < x ; p = a _ “*).(a) Velocity profile.(b) Temperature 

profiles. Legend same as given in Table 2. 
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Table 1. Favourable case : Characteristic values for the first 
subrange (0 < o. < 1) for mixed convection buoyant plume 

oi tl F’(O) MO) -A 

0 0 1.0 0.36 0.0 
0.1 0.2677 1.2059 0.3735 0.441 
0.2 0.5226 1.3744 0.3827 0.7541 
0.3 0.7698 1.5207 0.3897 0.9934 
0.4 1.0018 1.6S19 0.3653 1.1888 

reverse flow domain as CI decreases from CX, to zero the 
temperature H(0) decreases to zero continuously. The 
numerical results for the thickness of boundary layer 6 
(defined as value of Y where u = 0.99U,) the thickness 
of reverse flow layer 6, and various other characteristics 
are given in Table 3. 

For the adverse case the numerical results for profiles 
of velocity F’(c) and temperature If({) are displayed in 
Figs. 5 and 6, respectively, and the curves labelled 
1,2,3,. . ,I 1 correspond to the various values of ccgiven 
in Table 3. The curve labelled 6 is for the marginal case 
LX = E,, the curves l-5 are for the forward flow case and 
the curves 6-l 1 are for the reverse flow case. The 
velocity profiles clearly display the duality of the 
solutions. Figure 5 shows the extent of reverse flow in 
the transverse direction 6, is zero at CL = 1, (curve 6) and 

Table 2. Favourable case : Characteristic values for the second 
subrange (1 > fi > 0) for mixed convection buoyant plume 

B B .f”(O) MO) -A 

0 0 1.3339 0.4963 6.6506 
0.4 0.2695 1.3489 0.4538 3.5747 
0.5 0.5219 1.4140 0.4256 2.3149 
1.2 0.7657 1.5171 0.407 1 1.6079 
1.6 1.0054 1.6490 0.3948 1.1715 

increases as E decreases from n,. In the limit as ‘x -+ 0, the 
thickness of reverse flow layer 6, increases but the 
magnitude of the velocity F’(0) at the axis approaches 
zero. The temperature profiles displayed in Fig. 6 show 
that for the forward flow case (curves l---6) the 
temperature monotonically decreases from its value 
H(O), at the axis, to zero at infinity. However, in the 
reverse flow case (curves 7-11) the temperature profiles 
show a maximum (say, H = H,,, at 4 = <,,,). As z 
decreases from its value or, the i,,, increases. II,,, 
decreases continuously and <,, + 00 as H,,, -+ 0. The 
above behaviour of the velocity and temperature 
profiles suggests that as CI + OP the velocity profile 
approaches a mixing layer, similar to that of Chapman, 
with a shift in origin [6]. The above mixing layer arises 
in a manner analogous to that of Kennedy and 
Stewartson (see Chapter 4 of ref. [6]) where the pressure 
gradient in a self-similar incompressible wake 
approaches zero. 

In the reverse flow situation, where the thickness of 
the boundary layer (in terms of transformed 
coordinate, say, i,) is appreciably larger than in the 
forward flow situation, the utility ofthe boundary layer 
equations may appear somewhat limited. If pcJ is the 
thickness of boundary layer in the physical coordinate 
then from equation (7) we have 

(Y,lX)’ = GWJ,x. (41) 

The boundary layer equations are valid for y, << x and 
the condition (41) is satisfied for 

x >> vy,/u,. (42) 

Thecondition(41)implies thatforsmall valuesof<, the 
validity of the solutions extends to the near source 

region whereas for large values of i,. the solution is 

I I I I 
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FIG. 3. Favourable case: The velocity and temperature in the plane of symmetry and entrainment function A 
against the mixed convection parameter CI. 
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F‘K;. 4. Adverse cast:: The flow characteristics of the mixed convection buoyant plume. (a) Non-dmlenslonal 
velocity r(O) at the axis and entrainment parameter A. (b) Non-dimensional temperature H(0) at the axis 

against mixed convection parameter a. The dotted lines show the results from Oseen-linearization. 

valid relatively far from the heat source. In the 
neighbourhood of the region .Y - 5, v/U I the 
boundary layer equations fail and one has to consider 
the full Navier-Stokes equations. 

5. CONCLUSIONS 

(a) For the favourable case, where buoyancy effects 
accelerate the ilow in the plume. the solution to the 

mixed convection problem is unique 
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FIG. 5. Adverse case: Velocity profiles for the mixed FIG. 6. Adverse case: Temperature profiles for the mlxcd 

convection buoyant plumes. Curves labelled 1,2,3, ,I1 convection buoyant plume. Curves labelled 1.2.7, 1 I 
correspond to values of c1 given in Table 3. correspond to the values of 2 given in Table 3 

(b) For the adverse case, the buoyancy retards the 
flow in the plume. For r < CX~ the solutions are dual 
leading to forward and reverse flows in the plume. For 
c( = CC, the solution is unique, corresponding to the 
marginal state between the forward and reverse 110~s. 
For r > 9, the solution to the problem does not exist. 

(c)The nature of dual solutions in the adverse cast I> 
summarized below: For a given 

(i) c( < x,, the solutions are dual ; 
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Table 3. Adverse case: Characteristic values of buoyancy layer for various values of mixed 
convection parameter a 

387 

Legend 
in Figs. 
5 and 6 F’(O) c( H(0) 6[U,/(2vx)]“2 A w-J,/(2~W2 

1 1.0 0.0 0.36 0 0 

2 0.8 0.2141 0.3438 2.7823 0.5230 
3 0.6 0.3826 0.3234 3.2209 1.1817 
4 0.4 0.5052 0.2969 3.8932 2.0479 
5 0.2 0.5811 0.2608 4.0908 3.2695 
6 0.0 0.6076 0.2083 4.3204 5.2594 0.0 
7 -0.2 0.5728 0.1188 5.0889 10.0744 1.633 
8 -0.27 0.5112 0.465OE- 1 6.1613 18.9371 2.750 
9 -0.24 0.4054 0.9818E-2 7.7822 39.1690 4.485 

10 -0.20 0.3609 0.3146E-2 9.3969 60.1973 5.820 
11 -0.15 0.2675 0.5765E-3 12.1201 105.0362 8.116 

(ii) F’(0) > 0, the solution is unique; 
(iii) F’(0) < 0, the solution for H(O)is unique whereas 
the values of u are dual ; 
(iv) H(O), the solution is unique. 

(d) In the adverse case the Oseen-linearization can 
be fruitfully employed to study the forward flow 
situation for small values of tl( < 0.2). In the reverse flow 
situation the solution for CI + 0 approaches a mixing 
layer with a shift in origin. 

5. 

6. 
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APPENDIX A 

EXISTENCE OF SOLUTIONS 

The existence of the solution to the equations (9x13) in a 
weaker sense can be analyzed by employing the Oseen- 
linearization, where F is replaced by c in non linear terms. The 
integration of equations (9) and (10) under boundary 
conditions (11) and (12) yields 

2eAa 
F’ = 1 - z C~,(~U2)-~,(i/2)1, 

H,=Aexp(-o[/2), A>O. 

Using the above solution the heat flux relation (13) yields a 
quadratic equation 

where J is a constant. For a given 8, we can fix h(O) = 1, and 
guess 3’(O) such that the boundary condition 3(co) = b is 
satisfied. The converged solution (f,Q will lead to the value J 
defined by equation (B2). The converged solution can be 
transformed in terms of original variables by equation (Bl) 
and the values of /I is given by 

/I = fl/J1’2. (B3) 

In another case equations (9H13) are invariant under the 
transformation 

mA2+a,(-2A+o) = 0, (Al) i = c, F(5) = fi(& uH(5) = aiH(f) (B4) 

t(, = (c-l)/[4* l*(q) 

The two roots of the equation (Al) are 

A= 
l*(l+&a/a,)“Z 

-eaJq 

642) 

(A3) 

For the adverse case (E = - 1) the two roots are distinctly 
positive and equal provided c( S a,. For e = 0.72, equation 
(A2) predicts GI, = 0.608. The slight error in the two values of a, 
is due to the fact that the linearization employed here is not 
valid around CL Y a,. The roots (A3) are complex for a > a, 
implying the non-existence of the solutions. 

For the favourable case (E = l), only one of the two roots in 
equation (A3) is positive, implying that the unique solution 
exists for all values of e and c(. 

APPENDIX B 

METHOD OF SOLUTION 

The self-similar equations in Section 2 form a non-linear 
two-point boundary value problem. The two missing 
conditions to be guessed can be reduced to one by the 
transformation given below. 

The equations (17) (18) and (20b) are invariant under the 
transformation 

f (d =3(lX h(v) = &;(rj)/J, ‘I = ri/J 

but the conditions (21a) and (22) are changed to 

(Bl) 

$//atj = p(J)“’ = B (say), 
s 

mff(tj)h drj = J (B2) 
0 



CONVECTION MIXTE DANS IJN PANAC’HE AXISYMETRIQI:E 

Rbumt? La convection mix& pour unc source ponctuellc de chaleur et un ~coulement hhre vcrt~i ect 
analysee en employant les equations de la couche limite. Les deux solutions pour les effets de gravitahon 
favorables ou adverses sont Ctudices en rapport avec I’ecoulement incident. LJn argt~ment analytiquc indiyue 
que les solutions pour le cas favorable ont 6te obtenues pour tout le regime d’ecoulement allant de la 
convection for&e pure a la convection naturelle pure. Dans le cas adverse. l’ecoulement dans Ic panache ebt 
retarde et les solutions duales numtriquescorresporldent aux ecoulements direct et de retour danc le panache, 

GEMISCHTI’ K(}NV~KTlON IN EINER ACHSENSYIMMETRISC‘I-IE’i 
A~;~~TRlEBSSTRBIVIliN(; 

Zusammenfassung Die gcmischte Konvektitrn an einer aL‘hsensymmetrlschen piinktftirmigcn 
Wiirmeyuelle, die durch eine vertikalc freic Striimung hestirnmt 1st. wird mit Hilfe der 
Grenzschichtgleichungen untersucht. Es werden die beiden FUe betrachtct. in denen die Auftriebseffekte die 
vorhandene Grundstriimung vet-&it-ken oder ihr entgegenwirken. Die analytische Behandlunp Leigt. dab die 
Liisungen fiir den verstdrkenden Fall cindeutig sind, w%hrend sich Ktr den entgegellwirkenden Fall 
doppeldeutige Liisungen ergeben. Die rltlrnerisch~n Liisungen fur den v~rst~rkenden Fall wurdsn fiir den 
gesamten Bereichderstr~mungs~ust~nde~~~nreinererzwungener Konvektion biszu reiner freier Konvektiun 
der Auftriebsstr6mung berechnet. Im entgegengerichteten Fall wird die Striimung im Auftriebsgebiet 
verziigert, und die doppeldeutigen numerischen L.r+.tngen entsprechen der direkten und der Riickstriimung 

im A rrftriebsgebiet 

CM~~AHHA~ KOHB~KU~~ B OCEC~MMETP~~HO~ ff,~ABY~E~ C’TPYE 

.hHOTaUWf-CMeUfaHHaR KOHBeKUAIl B C:fy%e OCeCNMMeTpWfH"f'0 To~ewof~o wrowffiKa Teffna. 

BbflbfBaeMaR sep*lcKanbsbhv CB"6"IlHblM reqetffiet.4. ffp"aHfL7H?f,pOBaHa C If"M"LUbl0 ypaBHeHiiii 

norpa~wfeoro cnosf. M3yreHbf asa pemeeaa. KorAa cfina nifaeyuecru kitdeer TaKoe xe tianpasirenue, 
KIK HareKafoUfuii IIOTOK. HJfM fIpOTBBOrl"~loxnfa eMy. AHann ywa3bfeaeT Ha c,w~cTBefwoCrb 

!YSffeHH5f ,!Wff IfepBOr" CJfy'faw U HWfMLJMe .W3yX @%LfWi~ WIR BTOpOf'O. qUC)leHHble ~ILleHMR :?JfR 

nepB"r" Cnysan *,o.~y~~~~f 80 web9 nHana3owe pem~hsos Te9eHmx Ha'fmfax c 9kicT" ~bfHy~~eHH"~ 

K"fif3eKUxti fi K"~sarrcBoii"~itfoKoH~eKT~~ff"ii crpyeii. Bo~ropo~cnysaereseeaea crpye ~ra5fenitetro. 
a AlBa peLLIt%fkfR COOTBeTCTByfOT npffMo~y M 0tipaTH"My TeYeHHIlM B CTpyC 


